Your First Optimization with globalMOO
This guide will take you from zero to your first working optimization in about 15 minutes. We'll create a simple but complete example that demonstrates the key features of globalMOO.
Try it interactively: Follow along with this guide in our Interactive Google Colab Notebook
What You'll Build
We'll optimize a simple function with two inputs to achieve desired outputs. This example will teach you:
How to set up authentication
How to create a model and project
How to run an optimization
How to interpret and use the results
Prerequisites
Python 3.10 or higher
A globalMOO API key (get one at https://api.globalmoo.ai/)
Basic Python knowledge
Step 1: Installation and Setup
Install the SDK (use the appropriate package manager for your language):
pip install globalmoo-sdk
npm install @globalmoo/globalmoo-sdk
composer require globalmoo/globalmoo-php
Create a new file and add the necessary imports and setup:
import logging
from typing import List
from dotenv import load_dotenv
from globalmoo.client import Client
from globalmoo.request.create_model import CreateModel
from globalmoo.request.create_project import CreateProject
from globalmoo.request.load_output_cases import LoadOutputCases
from globalmoo.request.load_objectives import LoadObjectives
from globalmoo.request.suggest_inverse import SuggestInverse
from globalmoo.request.load_inversed_output import LoadInversedOutput
from globalmoo.enums.input_type import InputType
from globalmoo.enums.objective_type import ObjectiveType
# Configure logging
logging.basicConfig(level=logging.INFO)
logging.getLogger('httpx').setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Initialize client using environment variables
client = Client()
const globalMOO = require('globalmoo');
const dotenv = require('dotenv');
// Load environment variables
dotenv.config();
// Initialize client using environment variables
const client = new globalMOO();
require_once 'vendor/autoload.php';
$dotenv = Dotenv\Dotenv::createImmutable(__DIR__);
$dotenv->load();
// Initialize client using environment variables
$client = new GlobalMOO\Client();
Or if you prefer to specify credentials directly:
from globalmoo.credentials import Credentials
credentials = Credentials(
api_key="your-api-key",
base_uri="https://api.globalmoo.ai/api"
)
client = Client(credentials=credentials)
const client = new globalMOO({
apiKey: "your-api-key",
baseUri: "https://api.globalmoo.ai/api"
});
$client = new GlobalMOO\Client([
'api_key' => 'your-api-key',
'base_uri' => 'https://api.globalmoo.ai/api'
]);
Step 2: Define Your Function
Let's optimize a simple linear function with 3 inputs and 5 outputs:
def my_function(inputs: List[float]) -> List[float]:
"""Simple linear function that we want to optimize."""
v01 = inputs[0]
v02 = inputs[1]
v03 = inputs[2]
o01 = v01 + v02 + v03 # Sum of all inputs
o02 = (v01 - 2.0) + (v02 - 2.0) + v03 # Shifted sum
o03 = (v01 - 2.0) + v02 + (v03 - 2.0) # Different shifted sum
o04 = v01 + (v02 - 2.0) + (v03 - 2.0) # Another variation
o05 = 3.0 * v01 + 2.0 * v03 + 1.0 * v03 # Weighted sum
return [o01, o02, o03, o04, o05]
function myFunction(inputs) {
const [v01, v02, v03] = inputs;
const o01 = v01 + v02 + v03; // Sum of all inputs
const o02 = (v01 - 2.0) + (v02 - 2.0) + v03; // Shifted sum
const o03 = (v01 - 2.0) + v02 + (v03 - 2.0); // Different shifted sum
const o04 = v01 + (v02 - 2.0) + (v03 - 2.0); // Another variation
const o05 = 3.0 * v01 + 2.0 * v03 + 1.0 * v03; // Weighted sum
return [o01, o02, o03, o04, o05];
}
function myFunction(array $inputs): array {
$v01 = $inputs[0];
$v02 = $inputs[1];
$v03 = $inputs[2];
$o01 = $v01 + $v02 + $v03; // Sum of all inputs
$o02 = ($v01 - 2.0) + ($v02 - 2.0) + $v03; // Shifted sum
$o03 = ($v01 - 2.0) + $v02 + ($v03 - 2.0); // Different shifted sum
$o04 = $v01 + ($v02 - 2.0) + ($v03 - 2.0); // Another variation
$o05 = 3.0 * $v01 + 2.0 * $v03 + 1.0 * $v03; // Weighted sum
return [$o01, $o02, $o03, $o04, $o05];
}
Step 3: Create a Model and Project
# Model configuration
MODEL_NAME = "My First Optimization"
INPUT_COUNT = 3
OUTPUT_COUNT = 5
MIN_VALUES = [0.0, 0.0, 0.0]
MAX_VALUES = [10.0, 10.0, 10.0]
INPUT_TYPES = [InputType.FLOAT] * INPUT_COUNT
# Create a model
model = client.execute_request(CreateModel(
name=MODEL_NAME
))
logger.info(f"Created model with ID: {model.id}")
# Create a project with input specifications
project = client.execute_request(CreateProject(
model_id=model.id,
input_count=INPUT_COUNT,
minimums=MIN_VALUES,
maximums=MAX_VALUES,
input_types=INPUT_TYPES,
categories=[] # Empty list since we have no categorical variables
))
logger.info(f"Created project with ID: {project.id}")
// Model configuration
const MODEL_NAME = "My First Optimization";
const INPUT_COUNT = 3;
const OUTPUT_COUNT = 5;
const MIN_VALUES = [0.0, 0.0, 0.0];
const MAX_VALUES = [10.0, 10.0, 10.0];
const INPUT_TYPES = Array(INPUT_COUNT).fill("float");
// Create a model
const model = await client.createModel({
name: MODEL_NAME
});
console.log(`Created model with ID: ${model.id}`);
// Create a project with input specifications
const project = await client.createProject({
modelId: model.id,
inputCount: INPUT_COUNT,
minimums: MIN_VALUES,
maximums: MAX_VALUES,
inputTypes: INPUT_TYPES,
categories: [] // Empty list since we have no categorical variables
});
console.log(`Created project with ID: ${project.id}`);
// Model configuration
$MODEL_NAME = "My First Optimization";
$INPUT_COUNT = 3;
$OUTPUT_COUNT = 5;
$MIN_VALUES = [0.0, 0.0, 0.0];
$MAX_VALUES = [10.0, 10.0, 10.0];
$INPUT_TYPES = array_fill(0, $INPUT_COUNT, "float");
// Create a model
$model = $client->createModel([
'name' => $MODEL_NAME
]);
echo "Created model with ID: {$model->id}\n";
// Create a project with input specifications
$project = $client->createProject([
'model_id' => $model->id,
'input_count' => $INPUT_COUNT,
'minimums' => $MIN_VALUES,
'maximums' => $MAX_VALUES,
'input_types' => $INPUT_TYPES,
'categories' => [] // Empty list since we have no categorical variables
]);
echo "Created project with ID: {$project->id}\n";
Step 4: Run Initial Cases
# Get input cases from the project
input_cases = project.input_cases
logger.info(f"Received {len(input_cases)} input cases")
# Compute outputs for each input case
output_cases = [my_function(single_case) for single_case in input_cases]
logger.info(f"Computed {len(output_cases)} output cases")
# Create trial with the computed outputs
trial = client.execute_request(LoadOutputCases(
model_id=model.id,
project_id=project.id,
output_count=OUTPUT_COUNT,
output_cases=output_cases
))
logger.info(f"Successfully created trial with ID: {trial.id}")
// Get input cases from the project
const inputCases = project.inputCases;
console.log(`Received ${inputCases.length} input cases`);
// Compute outputs for each input case
const outputCases = inputCases.map(singleCase => myFunction(singleCase));
console.log(`Computed ${outputCases.length} output cases`);
// Create trial with the computed outputs
const trial = await client.loadOutputCases({
modelId: model.id,
projectId: project.id,
outputCount: OUTPUT_COUNT,
outputCases: outputCases
});
console.log(`Successfully created trial with ID: ${trial.id}`);
// Get input cases from the project
$inputCases = $project->getInputCases();
echo "Received " . count($inputCases) . " input cases\n";
// Compute outputs for each input case
$outputCases = array_map('myFunction', $inputCases);
echo "Computed " . count($outputCases) . " output cases\n";
// Create trial with the computed outputs
$trial = $client->loadOutputCases([
'model_id' => $model->id,
'project_id' => $project->id,
'output_count' => $OUTPUT_COUNT,
'output_cases' => $outputCases
]);
echo "Successfully created trial with ID: {$trial->id}\n";
Step 5: Set Optimization Goals
# Define our target values and how we want to achieve them
TRUTHCASE = [5.4321, 5.4321, 5.4321] # The inputs we're trying to find
objectives = my_function(TRUTHCASE) # The outputs we want to match
# Define how precise we want each objective to be
OBJECTIVE_TYPES = [ObjectiveType.PERCENT] * OUTPUT_COUNT # Use percentage-based matching
PERCENT_BELOW = [-1.0] * OUTPUT_COUNT # Allow 1% below target
PERCENT_ABOVE = [ 1.0] * OUTPUT_COUNT # Allow 1% above target
# By convention, the last entry in input_cases is the center of the search space,
# which serves as a good starting point for the optimization
initial_input = input_cases[-1]
initial_output = output_cases[-1]
# Initialize the optimization
objective = client.execute_request(LoadObjectives(
model_id=model.id,
project_id=project.id,
trial_id=trial.id,
objectives=objectives, # What outputs we want
objective_types=OBJECTIVE_TYPES, # How to match each output
initial_input=initial_input, # Where to start from
initial_output=initial_output, # Its corresponding output
minimum_bounds=PERCENT_BELOW, # How far below target is acceptable
maximum_bounds=PERCENT_ABOVE, # How far above target is acceptable
desired_l1_norm=0.0 # Required, defaults to 0.0
))
logger.info("Initialized inverse optimization")
// Define our target values and how we want to achieve them
const TRUTHCASE = [5.4321, 5.4321, 5.4321]; // The inputs we're trying to find
const objectives = myFunction(TRUTHCASE); // The outputs we want to match
// Define how precise we want each objective to be
const OBJECTIVE_TYPES = Array(OUTPUT_COUNT).fill("percent"); // Use percentage-based matching
const PERCENT_BELOW = Array(OUTPUT_COUNT).fill(-1.0); // Allow 1% below target
const PERCENT_ABOVE = Array(OUTPUT_COUNT).fill(1.0); // Allow 1% above target
// By convention, the last entry in input_cases is the center of the search space,
// which serves as a good starting point for the optimization
const initial_input = inputCases[inputCases.length - 1];
const initial_output = outputCases[outputCases.length - 1];
// Initialize the optimization
const objective = await client.loadObjectives({
modelId: model.id,
projectId: project.id,
trialId: trial.id,
objectives: objectives, // What outputs we want
objectiveTypes: OBJECTIVE_TYPES, // How to match each output
initialInput: initial_input, // Where to start from
initialOutput: initial_output, // Its corresponding output
minimumBounds: PERCENT_BELOW, // How far below target is acceptable
maximumBounds: PERCENT_ABOVE, // How far above target is acceptable
desiredL1Norm: 0.0 // Required, defaults to 0.0
});
console.log("Initialized inverse optimization");
// Define our target values and how we want to achieve them
$TRUTHCASE = [5.4321, 5.4321, 5.4321]; // The inputs we're trying to find
$objectives = myFunction($TRUTHCASE); // The outputs we want to match
// Define how precise we want each objective to be
$OBJECTIVE_TYPES = array_fill(0, $OUTPUT_COUNT, "percent"); // Use percentage-based matching
$PERCENT_BELOW = array_fill(0, $OUTPUT_COUNT, -1.0); // Allow 1% below target
$PERCENT_ABOVE = array_fill(0, $OUTPUT_COUNT, 1.0); // Allow 1% above target
// By convention, the last entry in input_cases is the center of the search space,
// which serves as a good starting point for the optimization
$initial_input = end($inputCases);
$initial_output = end($outputCases);
// Initialize the optimization
$objective = $client->loadObjectives([
'model_id' => $model->id,
'project_id' => $project->id,
'trial_id' => $trial->id,
'objectives' => $objectives, // What outputs we want
'objective_types' => $OBJECTIVE_TYPES, // How to match each output
'initial_input' => $initial_input, // Where to start from
'initial_output' => $initial_output, // Its corresponding output
'minimum_bounds' => $PERCENT_BELOW, // How far below target is acceptable
'maximum_bounds' => $PERCENT_ABOVE, // How far above target is acceptable
'desired_l1_norm' => 0.0 // Required, defaults to 0.0
]);
echo "Initialized inverse optimization\n";
Other available objective types include:
ObjectiveType.EXACT
: Match exactly within L1 norm (use desiredL1Norm)ObjectiveType.PERCENT
: Match within percentage error bounds (1.0 = 1.0%)ObjectiveType.VALUE
: Match within error bounds in the original unitsObjectiveType.LESS_THAN
: Keep output below targetObjectiveType.LESS_THAN_EQUAL
: Keep output at or below targetObjectiveType.GREATER_THAN
: Keep output above targetObjectiveType.GREATER_THAN_EQUAL
: Keep output at or above targetObjectiveType.MINIMIZE
: Minimize output toward targetObjectiveType.MAXIMIZE
: Maximize output toward target
Step 6: Run the Optimization Loop
# Run optimization loop
max_iterations = 10
for iteration in range(max_iterations):
# Get next suggested experiment
inverse = client.execute_request(SuggestInverse(
model_id=model.id,
project_id=project.id,
trial_id=trial.id,
objective_id=objective.id
))
logger.info(f"Iteration {iteration + 1}: Received suggestion")
# Run the experiment
next_output = my_function(inverse.input)
# Load the experimental results
inverse = client.execute_request(LoadInversedOutput(
model_id=model.id,
project_id=project.id,
trial_id=trial.id,
objective_id=objective.id,
output=next_output
))
# Log detailed results
logger.info("Current solution details:")
logger.info(f" Input: {[f'{x:.4f}' for x in inverse.input]}")
logger.info(f" Output: {[f'{x:.4f}' for x in next_output]}")
logger.info(f" Target: {[f'{x:.4f}' for x in objectives]}")
if inverse.results:
for result in inverse.results:
logger.info(f"\nObjective {result.number}:")
logger.info(f" Type: {result.type}")
logger.info(f" Error: {result.error:.6f}")
logger.info(f" Satisfied: {'✓' if result.satisfied else '✗'}")
logger.info(f" Detail: {result.detail}")
# Check if we've found a satisfactory solution
if inverse.should_stop():
if inverse.satisfied_at:
logger.info("Found satisfactory solution!")
else:
logger.info(f"Search stopped: {inverse.get_stop_reason().description()}")
break
logger.info(f"Completed iteration {iteration + 1}")
# Report final results
logger.info("\nFinal Results:")
if inverse.satisfied_at:
logger.info("Solution satisfied all objectives!")
logger.info("Satisfaction details:")
for i, (satisfied, detail) in enumerate(zip(inverse.get_satisfaction_status(), inverse.get_result_details())):
logger.info(f" Objective {i}: {'✓' if satisfied else '✗'} - {detail}")
else:
logger.info("Solution did not satisfy all objectives")
logger.info("Status per objective:")
for i, (satisfied, detail) in enumerate(zip(inverse.get_satisfaction_status(), inverse.get_result_details())):
logger.info(f" Objective {i}: {'✓' if satisfied else '✗'} - {detail}")
logger.info(f"\nFinal solution:")
logger.info(f" Input values: {[f'{x:.4f}' for x in inverse.input]}")
logger.info(f" Output values: {[f'{x:.4f}' for x in next_output]}")
logger.info(f" Target values: {[f'{x:.4f}' for x in objectives]}")
logger.info(f" Error values: {[f'{e:.6f}' for e in inverse.get_objective_errors()]}")
# Don't forget to close the client
client.http_client.close()
logger.info("Closed client connection")
// Run optimization loop
const maxIterations = 10;
for (let iteration = 0; iteration < maxIterations; iteration++) {
// Get next suggested experiment
let inverse = await client.suggestInverse({
modelId: model.id,
projectId: project.id,
trialId: trial.id,
objectiveId: objective.id
});
console.log(`Iteration ${iteration + 1}: Received suggestion`);
// Run the experiment
const nextOutput = myFunction(inverse.input);
// Load the experimental results
inverse = await client.loadInversedOutput({
modelId: model.id,
projectId: project.id,
trialId: trial.id,
objectiveId: objective.id,
output: nextOutput
});
// Log detailed results
console.log('Current solution details:');
console.log(` Input: ${inverse.input.map(x => x.toFixed(4))}`);
console.log(` Output: ${nextOutput.map(x => x.toFixed(4))}`);
console.log(` Target: ${objectives.map(x => x.toFixed(4))}`);
if (inverse.results) {
inverse.results.forEach(result => {
console.log(`\nObjective ${result.number}:`);
console.log(` Type: ${result.type}`);
console.log(` Error: ${result.error.toFixed(6)}`);
console.log(` Satisfied: ${result.satisfied ? '✓' : '✗'}`);
console.log(` Detail: ${result.detail}`);
});
}
// Check if we've found a satisfactory solution
if (inverse.shouldStop()) {
if (inverse.satisfiedAt) {
console.log('Found satisfactory solution!');
} else {
console.log(`Search stopped: ${inverse.getStopReason().description}`);
}
break;
}
console.log(`Completed iteration ${iteration + 1}`);
}
// Report final results
console.log('\nFinal Results:');
if (inverse.satisfiedAt) {
console.log('Solution satisfied all objectives!');
console.log('Satisfaction details:');
inverse.results.forEach((result, i) => {
console.log(` Objective ${i}: ${result.satisfied ? '✓' : '✗'} - ${result.detail}`);
});
} else {
console.log('Solution did not satisfy all objectives');
console.log('Status per objective:');
inverse.results.forEach((result, i) => {
console.log(` Objective ${i}: ${result.satisfied ? '✓' : '✗'} - ${result.detail}`);
});
}
console.log('\nFinal solution:');
console.log(` Input values: ${inverse.input.map(x => x.toFixed(4))}`);
console.log(` Output values: ${nextOutput.map(x => x.toFixed(4))}`);
console.log(` Target values: ${objectives.map(x => x.toFixed(4))}`);
console.log(` Error values: ${inverse.getObjectiveErrors().map(x => x.toFixed(6))}`);
} finally {
if (typeof client !== 'undefined') {
await client.close();
console.log('Closed client connection');
}
}
// Run optimization loop
$maxIterations = 10;
for ($iteration = 0; $iteration < $maxIterations; $iteration++) {
// Get next suggested experiment
$inverse = $client->suggestInverse([
'model_id' => $model->id,
'project_id' => $project->id,
'trial_id' => $trial->id,
'objective_id' => $objective->id
]);
echo "Iteration " . ($iteration + 1) . ": Received suggestion\n";
// Run the experiment
$nextOutput = myFunction($inverse->input);
// Load the experimental results
$inverse = $client->loadInversedOutput([
'model_id' => $model->id,
'project_id' => $project->id,
'trial_id' => $trial->id,
'objective_id' => $objective->id,
'output' => $nextOutput
]);
// Log detailed results
echo "Current solution details:\n";
echo " Input: [" . implode(", ", array_map(fn($x) => number_format($x, 4), $inverse->input)) . "]\n";
echo " Output: [" . implode(", ", array_map(fn($x) => number_format($x, 4), $nextOutput)) . "]\n";
echo " Target: [" . implode(", ", array_map(fn($x) => number_format($x, 4), $objectives)) . "]\n";
if ($inverse->results) {
foreach ($inverse->results as $result) {
echo "\nObjective {$result->number}:\n";
echo " Type: {$result->type}\n";
echo " Error: " . number_format($result->error, 6) . "\n";
echo " Satisfied: " . ($result->satisfied ? '✓' : '✗') . "\n";
echo " Detail: {$result->detail}\n";
}
}
// Check if we've found a satisfactory solution
if ($inverse->shouldStop()) {
if ($inverse->satisfiedAt) {
echo "Found satisfactory solution!\n";
} else {
echo "Search stopped: " . $inverse->getStopReason()->description() . "\n";
}
break;
}
echo "Completed iteration " . ($iteration + 1) . "\n";
}
// Report final results
echo "\nFinal Results:\n";
if ($inverse->satisfiedAt) {
echo "Solution satisfied all objectives!\n";
echo "Satisfaction details:\n";
foreach ($inverse->results as $i => $result) {
echo " Objective $i: " . ($result->satisfied ? '✓' : '✗') . " - {$result->detail}\n";
}
} else {
echo "Solution did not satisfy all objectives\n";
echo "Status per objective:\n";
foreach ($inverse->results as $i => $result) {
echo " Objective $i: " . ($result->satisfied ? '✓' : '✗') . " - {$result->detail}\n";
}
}
echo "\nFinal solution:\n";
echo " Input values: [" . implode(", ", array_map(fn($x) => number_format($x, 4), $inverse->input)) . "]\n";
echo " Output values: [" . implode(", ", array_map(fn($x) => number_format($x, 4), $nextOutput)) . "]\n";
echo " Target values: [" . implode(", ", array_map(fn($x) => number_format($x, 4), $objectives)) . "]\n";
echo " Error values: [" . implode(", ", array_map(fn($x) => number_format($x, 6), $inverse->getObjectiveErrors())) . "]\n";
} finally {
if (isset($client)) {
$client->close();
echo "Closed client connection\n";
}
}
Complete Code
The complete code is available in the examples directory as linear_example.py
.
What's Next?
Now that you have your first optimization working, you can:
Try different objective types (EXACT, VALUE, LESS_THAN, etc.)
Learn about different input types (integers, categories) in the tutorials
Explore more complex optimization scenarios
Check out the example gallery for real-world applications
Common Issues
Authentication errors
Check your API key in .env file or credentials
Ensure you're using the correct base URI
Optimization not converging
Try increasing max_iterations
Check if your target values are achievable
Consider relaxing your objective criteria
Need help?
Contact support@globalmoo.com
Check our documentation at https://docs.globalmoo.ai
Last updated